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Abstract

We study a cosmological model in which phantom dark energy has an interaction with dark

matter by introducing a term in the equations of motion of dark energy and dark matter. Such

a term is parameterized by a product of a dimensionless coupling function δ, Hubble parameter

and the energy density of dark matter, and it manifests an energy flow between the dark energy

and dark matter. We discuss two cases, one is that the state parameter ωe of the dark energy

keeps as a constant; the other is that the dimensionless coupling function δ remains as a constant.

We investigate the effect of the interaction on the evolution of the universe, the total lifetime of

the universe, and the ratio of the period when the universe is in the coincidence state to its total

lifetime. It turns out the interaction will produce significant deviation from the case without

the interaction.
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1 Introduction

Over the past decade one of most amazing discoveries is the one that our universe is currently

in accelerating expansion by observing high red shift supernova Ia [1]. Cross checks confirm this

from the cosmic microwave background radiation [2] and large scale structure [3]. To explain

this acceleration, one might modify the Einstein’s general relativity in the cosmic distance scale

or invoke the brane world scenario.

In Einstein’s general relativity, in order to give an explanation of the acceleration, one has

to introduce a component to the density of the universe with a large negative pressure, which

drives the universe to accelerating expand and is dubbed as dark energy in the literature. All

astronomical observations indicate that our universe is flat and it consists of approximately 72%

dark energy, 21% dark matter, 4.5% baryon matter and 0.5% radiation. A simplest candidate

of the dark energy is a tiny positive cosmological constant, which was introduced by Einstein

in 1917, two years later after he established general relativity. If it is true, one has to answer

the question why the cosmological constant is so small, ∼ 10−122(Mp)
4, rather than ∼ (Mp)

4,

which is expected from quantum field theory [4]. Here Mp ∼ 1019Gev is the Planck mass scale.

Although the small cosmological constant is consistent with all observational data so far, recall

that a slow roll scalar field can derive the universe to accelerating expand in the inflation model,

it is therefore imaginable to use a dynamical field to mimic the behavior of the dark energy.

The model of scalar field(s) acting as the dark energy is called quintessence model [5]. Following

k-inflation model [6], it is also natural to use a field with noncanonical kinetic term to explain

the current acceleration of the universe. Such models are named as k-essence models with some

interesting features [7]. Suppose that the dark energy has the equation of state, pe = ωeρe,

where pe and ρe are pressure and energy density, and ωe is called state parameter. In order to

derive the universe to accelerating expand, one has to have ωe < −1/3. For the cosmological

constant, ωe = −1; for the quintessence model, −1 < ωe < −1/3; and for the k-essence model, in

general one may has ωe > −1 or ωe < −1, but it is physically implausible to cross ωe = −1 [8].

It is well known that if ωe < −1, the dark energy will violate all energy conditions [9].

However, such dark energy models [10] are still consistent with observation data (−1.46 < ωe <

−0.78) [11]. The dark energy model with ωe < −1 is called phantom dark energy model. One

remarkable feature of the phantom model is that the universe will end its life with a “big rip”

(future singularity) within a finite time. That is, for a phantom dominated universe, its total

lifetime is finite. Before the death of the universe, the phantom dark energy will rip apart all

bound structures like the Milky Way, solar system, Earth, and ultimately the molecules, atoms,

nuclei, and nucleons of which we are composed [12](see also [13]).

Usually people assume that dark energy is coupled to other matter fields only through gravity.

Since the first principle is still not available to discuss the nature of dark energy and dark matter,

it is therefore conceivable to consider possible interaction between the dark energy and dark

matter. Indeed there exist a lot of literature on this subject (see for example [14, 15, 16, 17, 18]
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and references therein). In this paper, we also consider an interaction model between dark

energy and dark matter by phenomenologically introducing an interaction term in the equations

of motion, which describes the energy flow between the dark energy and dark matter. We

restrict the dark energy is a phantom one. Constraint from supernova type Ia data on such a

coupled dark energy model has been investigated very recently [18] (see also [16, 17]). Here we

are interested in how such an interaction between the phantom dark energy and dark matter

affects the evolution and total lifetime of the universe.

On the other hand, one important aspect of dark energy problem is the so-called coincidence

problem. Roughly specking, the question is why the energy densities of dark energy and dark

matter are in the same order just now. In other words, we live in a very special epoch when

the dark energy and dark matter densities are comparable. Most recently, developing the idea

proposed by McInnes [19], Scherrer [20] has attacked this coincidence problem for a phantom

dominated universe. Since the total lifetime of the phantom universe is finite, it is therefore

possible to calculate the fraction of its total lifetime when the universe in a (coincidence) state

for which the dark energy and dark matter densities are roughly comparable. It has been found

that the coincidence problem can be significantly ameliorated in such a phantom dominated

universe. In this paper we will also study the effect of the interaction between the phantom dark

energy and dark matter on the fraction of the period to its total lifetime when the universe is

the coincidence state.

The organization of this paper is as follows. In the next section, we first introduce the

coupled dark energy model. In Sec. 3 we discuss the case with a constant state parameter ωe

of the phantom dark energy. In Sec. 4 we study the case with a constant coupling function δ

introduced in Sec. 2, in this case, the state parameter ωe will no longer be a constant. The

conclusion is contained in Sec. 5.

2 Interacting phantom dark energy with dark matter

Let us consider a universe model which only contains dark matter and dark energy (generalizing

to include the baryon matter and radiation is straightforward). A phenomenal model of interac-

tion between the dark matter and dark energy is assumed through an energy exchange between

them. Then the equations of motion of dark matter and dark energy in a flat FRW metric with

a scale factor a can be written as

ρ̇m + 3H(ρm + pm) = δHρm, (2.1)

ρ̇e + 3H(ρe + pe) = −δHρm, (2.2)

where ρm and pm are the energy density and pressure of dark matter, while ρe and pe for dark

energy, H ≡ ȧ/a is the Hubble parameter, and δ is a dimensionless coupling function. Suppose

that the dark matter has pm = 0 and the dark energy has the equation of state pe = ωeρe. Note
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that in general ωe is a function of time, not a constant. Clearly the total energy density of the

universe, ρt = ρm + ρe, obeys the usual equation

ρ̇t + 3H(ρt + pt) = 0, (2.3)

with the total pressure pt = pe. The Friedmann equation is

H2 =
8πG

3
ρt, (2.4)

and the acceleration of scale factor is determined by the equation

ä

a
= −

4πG

3
(ρt + 3pt) , (2.5)

where G is the Newton gravitational constant.

In general the coupling function δ may depend on all degrees of freedom of dark matter and

dark energy. However, if δ is dependent of the scale factor only, one then can integrate (2.1)

and obtain

ρm = ρm,0a
−3e

∫

δdα, (2.6)

where α = log a and ρm,0 is a constant of integration. Substituting this into (2.2), in order to

get the relation between the energy density of the dark energy and scale factor, one has to first

be given the relation of the pressure to energy density, namely the state parameter ωe. Here we

follow another approach to study the cosmological model by assuming a relation between the

energy densities of dark energy and dark matter as follows:

r ≡

ρe

ρm
=

ρe,0

ρm,0

(

a

a0

)ξ

, (2.7)

where ρe,0, a0 and ξ are three constants. Set the current value of the scale factor be one, namely

a0 = 1, then ρe,0 and ρm,0 have explanation as the current dark energy density and dark matter

energy density, respectively.

In this paper we will consider two special cases. One is the case with ωe being a constant.

The other is the case where the coupling function δ is a constant.

3 Cosmology with a constant state parameter of phantom dark

energy

In this section we consider the case with a constant ωe. In this case, one has

ρe =
Aaξ

1 + Aaξ
ρt, ρm =

1

1 + Aaξ
ρt, (3.1)

where the constant A = ρe,0/ρm,0 = Ωe,0/Ωm,0, Ωe,0 and Ωm,0 are density parameter values of

dark energy and dark matter at present, respectively. The total energy density satisfies

dρt

da
+

3

a

1 + (1 + ωe)Aaξ

1 + Aaξ
ρt = 0. (3.2)
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Integrating this yields

ρt = ρt,0a
−3[1 − Ωe,0(1 − aξ)]−3ωe/ξ , (3.3)

where the constant ρt,0 = ρe,0 + ρm,0. Therefore the Friedmann equation can be written down

as

H2 = H2
0a−3[1 − Ωe,0(1 − aξ)]−3ωe/ξ, (3.4)

with H0 the present Hubble parameter. With (3.1) and (3.3), one can get the coupling function

δ from (2.1),

δ = 3 +
ρ̇m

Hρm
= −

(ξ + 3ωe)Aaξ

1 + Aaξ
= −

ξ + 3ωe

ρt
ρe. (3.5)

This can be expressed further as

δ =
δ0

Ωe,0 + (1 − Ωe,0)a−ξ
, (3.6)

where δ0 = −Ωe,0(ξ + 3ωe). We have δ(a → 1) = δ0 and δ(a → ∞) = δ0/Ωe,0. Therefore we

see that when ξ > −3ωe, δ < 0, which implies that the energy flow is from the dark matter to

dark energy. On the contrary, when 0 < ξ < −3ωe, the energy flow is from the phantom dark

energy to dark matter. Further, we can see from (3.5) that there is no coupling between the

dark energy and dark matter as ξ = −3ωe. Of course this is true only for case where ωe is a

constant.

The deceleration parameter q is

q ≡ −

aä

ȧ2
= −1 +

Ḣ

H2
= −1 +

3

2

1 − Ωe,0 + (1 + ωe)Ωe,0a
ξ

1 − Ωe,0(1 − aξ)
. (3.7)

Note that q(a → ∞) = −1 + 3(1 + ωe)/(2Ωe,0) and q(a → 1) = −1 + 3ωeΩe,0/2, they are

always negative and q(a → 1) < q(a → ∞). In Fig. 1-3 we plot the relation of the deceleration

parameter to the red shift defined by z = 1/a − 1 for the different ωe and ξ. In plots we take

the density parameter of dark energy as Ωe,0 = 0.72. From figures we can see that for a fixed

ωe, a larger ξ leads to a smaller red shift when the universe transits from the deceleration phase

to acceleration phase. On the other hand, for a fixed ξ, a larger ωe corresponds to a smaller red

shift for that transition from the deceleration to acceleration phase.

The total lifetime of the universe can be obtained by integrating the Friedmann equation

(3.4). It is

tU = H−1
0

∫ ∞

0
da a1/2[1 − Ωe,0(1 − aξ)]3ωe/2ξ. (3.8)

Here we are interested in the change of the lifetime due to the interaction between the dark

energy and dark matter. Note that when ξ = −3ωe, the interaction disappears. Denote the

total lifetime by tT in this case, one has

tT = H−1
0

∫ ∞

0
da a1/2[1 − Ωe,0(1 − a−3ωe)]−/2. (3.9)
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Figure 1: The deceleration parameter q versus the red shift z for the case of Ωe,0 = 0.72 and

ωe = −1.5. Three curves from top to bottom correspond to cases ξ = 5.5, 4.5 and 3, respectively.
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Figure 2: The deceleration parameter q versus the red shift z for the case of Ωe,0 = 0.72 and

ωe = −1.3. Three curves from top to bottom correspond to cases ξ = 5.5, 4.5 and 3, respectively.

Denote the ratio of the lifetimes tU to tT by g:

g ≡

tU
tT

=

∫ ∞
0 da a1/2[1 − Ωe,0(1 − aξ)]3ωe/2ξ

∫ ∞
0 da a1/2[1 − Ωe,0(1 − a−3ωe)]−/2

=

∫ ∞
0 Ω

−3/2ξ
e,0 (1 − Ωe,0)

3(1+ωe)/2ξr3/2ξ−1(1 + r)3ωe/2ξdr
∫ ∞
0 Ω

1/2ωe

e,0 (1 − Ωe,0)−(1+ωe)/2ωer−1/2ωe−1(1 + r)−1/2dr
. (3.10)

In Fig. 4 we plot the ratio g for three different state parameters ωe = −1.5, −1.3 and −1.1.

Clearly, for a fixed ωe, the universe with a larger ξ has a longer lifetime, while for a fixed ξ, a

larger ωe leads to a longer lifetime of the universe. In Fig. 5 the ratio g is plotted versus the

parameters ξ and ωe.

Next we turn to the coincidence problem. Following [20], we calculate the ratio of period

when the universe is in the coincidence state to the total lifetime of the universe. That is, we

will calculate the ratio

f =
tc
tU

, (3.11)
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Figure 3: The deceleration parameter q versus the red shift z for the case of Ωe,0 = 0.72 and

ωe = −1.1. Three curves from top to bottom correspond to cases ξ = 5.5, 4.5 and 3, respectively.
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Figure 4: The ratio g of total lifetimes versus the parameter ξ = x for the case of Ωe,0 = 0.72.

Three curves from bottom to top correspond to the cases ωe = −1.5, −1.3 and −1.1, respectively.

where the period tc corresponding to that the universe is in the coincidence state is defined by

tc = H−1
0

∫ a2

a1

da a1/2[1 − Ωe,0(1 − aξ)]3ωe/2ξ. (3.12)

During the period of the scale factor from a1 to a2, the energy density of dark energy is compa-

rable to that of dark energy. This is not a well-defined problem to determine the scale factors

a1 and a2. In [20], Scherrer defined a scale of the energy density ratio r0 so that the dark energy

and dark matter densities are regarded as comparable if they differ by less than the ratio r0 in

either direction. He found that the ratio varies from 1/3 to 1/8 as ωe varies from −1.5 to −1.1

if r0 = 10 in a phantom dark energy model without interaction between the dark energy and

dark matter. In this sense indeed the coincidence problem is significantly ameliorated in the

phantom model. Now we want to see how the fraction varies when the interaction is present in

our model.

The fraction of the total lifetime, when the universe is in the coincidence state, turns out to

be

f =

∫ r0

1/r0
r3/2ξ−1(1 + r)3ωe/2ξdr

∫ ∞
0 r3/2ξ−1(1 + r)3ωe/2ξdr
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Figure 5: The ratio g of total lifetimes versus the parameters ξ = x and ωe in the case of

Ωe,0 = 0.72.

=

2
3(r

3/2ξ
0 2F1[

3
2ξ ,−3ωe

2ξ , 1 + 3
2ξ ,−r0] − r

−3/2ξ
0 2F1[

3
2ξ ,−3ωe

2ξ , 1 + 3
2ξ ,− 1

r0
])

Γ[3/2ξ]Γ[−3(1+ωe)/2ξ]
Γ[−3ωe/2ξ]

. (3.13)

Note that this ratio is independent of the current density parameter Ωe,0. In Fig. 6 and 7 we

plot the ratio f versus the scale r0 for different parameters ωe and ξ. Clearly for fixed ωe and

ξ, a larger r0 leads to a larger ratio f . For fixed r0 and ωe, a smaller ξ gives us a larger ratio.

For example, we see from Fig. 6 that when r0 = 10 and ωe = −1.5, the ratio f ∼ 0.45 for ξ = 3,

more large than the case (f = 1/3) without the interaction. Note that the middle curve in Fig. 6

corresponds to the case without the interaction (ξ = −3ωe). In Fig. 8, we plot the ratio f versus

the parameters ξ and r0 for a fixed ωe = −1.3.

4 6 8 10
r0

0.15

0.2

0.25

0.3

0.35

0.4

0.45

f

Figure 6: The ratio f versus the parameter r0 for the case of ωe = −1.5. Three curves from top

to bottom correspond to the cases of ξ = 3, 4.5 and 5.5, respectively.

4 Cosmology with a constant coupling parameter

In this section we consider the case with a constant coupling function δ. In this case, we have

the energy density of dark matter

ρm = ρm,0a
−3+δ. (4.1)
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Figure 7: The ratio f versus the parameter r0 for the case of ωe = −1.1. Three curves from top

to bottom correspond to the cases of ξ = 2, 3.3 and 4, respectively.
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Figure 8: The ratio f versus the parameters r0 and ξ for the case of ωe = −1.3. In the figure

x = ξ.

And then the dark energy density has the relation to the scale factor

ρe = ρe,0a
−3+δ+ξ . (4.2)

The Friedmann equation turns out to be

H2 = H2
0 (Ωm,0a

−3+δ + Ωe,0a
−3+δ+ξ). (4.3)

In this case, the state parameter ωe of the dark energy will depend on time (scale factor). From

(2.2), we can obtain

ωe = −

δ + ξ

3
−

δ

3

Ωm,0

Ωe,0
a−ξ. (4.4)

When δ = 0, one has ξ = −3ωe. This situation is just the case without the interaction. From

(4.2) and (4.4), one can see that in order the dark energy to be phantom, δ + ξ > 3 so that the

dark energy density increases with the scale factor. When δ + ξ = 3, although the dark energy

density keeps as a constant, it does not act as a cosmological constant due to the interaction

between the dark energy and dark matter. We see from (4.4) that

ωe(a → 0) = −sign(δ) · ∞, ωe(a → 1) = −

δ + ξ

3
−

δ

3

Ωm,0

Ωe,0
, ωe(a → ∞) = −

δ + ξ

3
. (4.5)
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The deceleration parameter is found to be

q = −1 +
1

2

(3 − δ)Ωm,0 + (3 − δ − ξ)Ωe,0a
ξ

Ωm,0 + Ωe,0aξ
, (4.6)

which has q = −1 + (3− δ − ξΩe,0)/2 when a = 1 and q = (1− δ − ξ)/2 when a → ∞. In Fig. 9

and 10 we plot the deceleration parameter versus the red shift for a fixed ξ = 4, different δ, and

for a fixed δ = 0.3 , different ξ, respectively. We see from Fig. 9 that for a given ξ, a larger δ

corresponds to a smaller red shift when the universe transits from a deceleration phase to an

acceleration phase, while Fig. 10 tells us that for a fixed δ, a larger ξ leads to a smaller red shift.

0.5 1 1.5 2
z

-1

-0.75

-0.5

-0.25

0.25

0.5

q

Figure 9: The deceleration parameter q versus the red shift z for the case of Ωe,0 = 0.72 and

a fixed ξ = 4. Three curves from top to bottom correspond to the cases δ = 0.3, 0 and −0.3,

respectively.
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z

-1.25
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-0.75
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-0.25

0.25

q

Figure 10: The deceleration parameter q versus the red shift z for the case of Ωe,0 = 0.72 and a

fixed δ = 0.3. Three curves from bottom to top at the q axis correspond to the cases ξ = 5, 4

and 3, respectively.

From (4.3) we can get the total lifetime of the universe

tU = H−1
0

∫ ∞

0
da a−1(Ωm,0a

−3+δ + Ωe,0a
−3+δ+ξ)−1/2. (4.7)
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We now consider the effect of the interaction on the total lifetime of the universe. Note that the

total lifetime of the universe without the interaction is

tT = H−1
0

∫ ∞

0
da a−1(Ωm,0a

−3 + Ωe,0a
−3+ξ)−1/2. (4.8)

Denote the ratio tU/tT by g, we can express this as

g =

∫ ∞
0 dr(

1−Ωe,0

Ωe,0
)(3−δ)/2ξr(3−δ−2ξ)/2ξ(1 + r)−1/2

∫ ∞
0 dr(

1−Ωe,0

Ωe,0
)3/2ξr(3−2ξ)/2ξ(1 + r)−1/2

. (4.9)

In Fig. 11, the ratio g is plotted versus the parameters ξ and δ for the case Ωe,0 = 0.72. We see

that the case δ > 0 is quite different from the case of δ < 0. For a fixed δ > 0, a larger ξ leads to

a longer lifetime of the universe. On the contrary, for a fixed δ < 0, a smaller ξ gives us a longer

lifetime. Further, for a fixed ξ, a smaller δ corresponds to a longer lifetime of the universe.
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0.2
d

3.5

4

4.5

5

x

0.5

1

1.5

g

-0.2

0

0.2
d

Figure 11: The ratio g of total lifetimes versus the parameters ξ = x and δ = d for the case of

Ωe,0 = 0.72.

Finally we consider the ratio of the universe in the coincidence state to the total lifetime. As

the case with a constant ωe considered in the previous section, we calculate the following ratio:

f =

∫ r0

1/r0
dr r(3−δ−2ξ)/2ξ(1 + r)−1/2

∫ ∞
0 dr r(3−δ−2ξ)/2ξ(1 + r)−1/2

. (4.10)

In Fig. 12 we plot the fraction f versus the scale r0 for a fixed ξ, but different δ. It shows that

a larger δ gives a larger ratio for a fixed r0. On the other hand, we plot the ratio f in Fig. 13

versus the scale r0 for a fixed δ, but different ξ, which shows that a larger ξ gives us a larger

ratio for a fixed r0. Fig. 14 shows the relation of the ratio f to the parameters ξ and δ for a

fixed scale r0 = 5.

5 Conclusion

In summary we discuss a cosmological model in which phantom dark energy has an interaction

with dark matter by phenomenologically introducing a term [see (2.1) and (2.2)] in the equations
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Figure 12: The ratio f versus the parameter r0 for a fixed ξ = 4. Three curves from top to

bottom correspond to the cases of δ = 0.3, 0 and −0.3, and corresponding state parameters of

dark energy are ωe,0 = −1.47, −1.33 and −1.19, respectively.

4 6 8 10
r0

0.1

0.2

0.3

0.4

f

Figure 13: The ratio f versus the parameter r0 for a fixed δ = 0.3. Three curves from top to

bottom correspond to the cases of ξ = 5, 4 and 3, and corresponding state parameters of dark

energy are ωe,0 = −1.80, −1.47 and −1.13, respectively.

of motion of dark energy and dark matter. Such a term is parameterized by a product of

a dimensionless coupling function δ, Hubble parameter and the energy density of dark matter,

and it manifests an energy flow between the dark energy and dark matter. We discuss two cases,

one is that the state parameter ωe = pe/ρe of the dark energy keeps as a constant; the other

is that the dimensionless coupling function δ remains as a constant. We investigate the effect

of the interaction on the evolution of the universe, the total lifetime of the universe, and the

ratio of period when the universe in the coincidence state to its total lifetime. We find that the

interaction has rich and significant consequence on these issues. For example, the fraction of the

period when the universe expands in the coincidence state to its total lifetime can approximately

reach 0.45 if we take ωe = −1.5, r0 = 10 and ξ = 3. It turns out that the coincidence problem

can indeed be significantly ameliorated in such an interaction phantom dark energy model. Of

course, except the constraints on the parameters of the coupled dark energy model from the

supernova Ia data [18], further constraints from astronomical observation data, for instance, of

cosmic microwave background radiation and large scale structure on this dark energy model
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Figure 14: The ratio f versus the parameters δ = d and ξ = x for a given r0 = 5.

should be carefully studied.
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